Kapat
0 Ürün
Alışveriş sepetinizde boş.
Kategoriler
    Filtreler
    Preferences
    Ara

    Cohomology of Drinfeld Modular Varieties

    Yazar : Gerard Laumon
    ISBN :9780521172745
    Sayfa Sayısı :360
    Ebatlar :15x23 cm
    Basım Yılı :2006
    Fiyat ve temin süresi için lütfen bize ulaşın

    Bu ürün için iade seçeneği bulunmamaktadır.

    Tükendi

    Tahmini Kargoya Veriliş Zamanı: 6-8 hafta

    Cohomology of Drinfeld Modular Varieties

    Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated.

    Kendi yorumunuzu yazın
    • Sadece kayıtlı kullanıcılar yorum yazabilir.
    • Kötü
    • Mükemmel

    Cohomology of Drinfeld Modular Varieties

    Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated.

    >